Derivative

Tutorial 2

CAI, Sheng

cs010@ie.cuhk.edu.hk

August 24, 2012

Outline

(1) Complex Numbers

- Division
- Complex Conjugate Numbers
- Polar Form of Complex Numbers
(2) Derivative
- Monotonicity and the Sign of the Derivative

Outline

(1) Complex Numbers

- Division
- Complex Conjugate Numbers
- Polar Form of Complex Numbers
(2) Derivative
- Monotonicity and the Sign of the Derivative

"Rationalizing Denominator"

Question: How to rationalize the denominator of $\frac{1}{\sqrt{2}+1}$?
Hint: Use $\sqrt{2}-1$.
Answer: $\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$.
Question: How to "rationalize" the denominator of $\frac{1}{1+i}$?
Hint: Use $1-i$ (Conjugate).
Answer: $\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}$.

"Rationalizing Denominator"

Question: How to rationalize the denominator of $\frac{1}{\sqrt{2}+1}$?
Hint: Use $\sqrt{2}-1$.
Answer: $\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$.
Question: How to "rationalize" the denominator of $\frac{1}{1+i}$?
Hint: Use $1-i$ (Conjugate).
Answer: $\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}$.

"Rationalizing Denominator"

Question: How to rationalize the denominator of $\frac{1}{\sqrt{2}+1}$?
Hint: Use $\sqrt{2}-1$.
Answer: $\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$.
Question: How to "rationalize" the denominator of $\frac{1}{1+i}$?
Hint: Use $1-i$ (Conjugate).
Answer: $\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}$.

"Rationalizing Denominator"

Question: How to rationalize the denominator of $\frac{1}{\sqrt{2}+1}$?
Hint: Use $\sqrt{2}-1$.
Answer: $\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$.
Question: How to "rationalize" the denominator of $\frac{1}{1+i}$?
Hint: Use 1 - i (Conjugate).
Answer: $\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}$.

"Rationalizing Denominator"

Question: How to rationalize the denominator of $\frac{1}{\sqrt{2}+1}$?
Hint: Use $\sqrt{2}-1$.
Answer: $\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$.
Question: How to "rationalize" the denominator of $\frac{1}{1+i}$?
Hint: Use 1 - i (Conjugate).

"Rationalizing Denominator"

Question: How to rationalize the denominator of $\frac{1}{\sqrt{2}+1}$?
Hint: Use $\sqrt{2}-1$.
Answer: $\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$.
Question: How to "rationalize" the denominator of $\frac{1}{1+i}$?
Hint: Use 1 - i (Conjugate).
Answer: $\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}$.

Complex Numbers Derivative

Division

Examples

Example

$$
z_{1}=8+3 i \text { and } z_{2}=9-2 i, \text { find } \frac{z_{1}}{z_{2}} .
$$

$$
\text { Solution } \frac{z_{1}}{z_{2}}=\frac{8+3 i}{9-2 i}=\frac{(8+3 i)(9+2 i)}{(9-2 i)(9+2 i)}=\frac{66}{85}+\frac{43}{85} i \text {. }
$$

Exercise

$z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, find $\frac{z_{1}}{z_{2}}$.

Examples

Example

$$
z_{1}=8+3 i \text { and } z_{2}=9-2 i, \text { find } \frac{z_{1}}{z_{2}} .
$$

$$
\text { Solution } \frac{z_{1}}{z_{2}}=\frac{8+3 i}{9-2 i}=\frac{(8+3 i)(9+2 i)}{(9-2 i)(9+2 i)}=\frac{66}{85}+\frac{43}{85} i \text {. }
$$

Exercise

$z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, find $\frac{z_{1}}{z_{2}}$

Examples

Example

$$
z_{1}=8+3 i \text { and } z_{2}=9-2 i, \text { find } \frac{z_{1}}{z_{2}} .
$$

$$
\text { Solution } \frac{z_{1}}{z_{2}}=\frac{8+3 i}{9-2 i}=\frac{(8+3 i)(9+2 i)}{(9-2 i)(9+2 i)}=\frac{66}{85}+\frac{43}{85} i \text {. }
$$

Exercise

$z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, find $\frac{z_{1}}{z_{2}}$.

Outline

(1) Complex Numbers

- Division
- Complex Conjugate Numbers
- Polar Form of Complex Numbers
(2) Derivative
- Monotonicity and the Sign of the Derivative

Identities of Conjugate

The complex conjugate \bar{z} of a complex number $z=x+i y$ is defined by $\bar{z}=x-i y$.

Identities 1

- $\operatorname{Re}(z)=x=\frac{1}{2}(z+\bar{z})$,
- $\operatorname{Im}(z)=y=\frac{1}{2 i}(z-\bar{z})$,
- $z \bar{z}=x^{2}+y^{2}$.

Identities 2

- $\overline{\left(z_{1}+z_{2}\right)}=\bar{z}_{1}+\bar{z}_{2}$,
- $\overline{\left(z_{1}-z_{2}\right)}=\bar{z}_{1}-\bar{z}_{2}$,
- $\overline{\left(z_{1} z_{2}\right)}=\bar{z}_{1} \bar{z}_{2}$,

Identities of Conjugate

The complex conjugate \bar{z} of a complex number $z=x+i y$ is defined by $\bar{z}=x-i y$.

Identities 1

- $\operatorname{Re}(z)=x=\frac{1}{2}(z+\bar{z})$,
- $\operatorname{Im}(z)=y=\frac{1}{2 i}(z-\bar{z})$,
- $z \bar{z}=x^{2}+y^{2}$.

Identities 2

- $\overline{\left(z_{1}+z_{2}\right)}=\bar{z}_{1}+\bar{z}_{2}$,
- $\overline{\left(z_{1}-z_{2}\right)}=\bar{z}_{1}-\bar{z}_{2}$,
- $\overline{\left(z_{1} z_{2}\right)}=\bar{z}_{1} \bar{z}_{2}$,
- $\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\bar{z}_{1}}{\bar{z}_{2}}$.

Examples

Example

Let $z_{1}=4+3 i$ and $z_{2}=2+5 i$. Verify that $\overline{\left(z_{1} z_{2}\right)}=\bar{z}_{1} \bar{z}_{2}$.
Solution

$$
\begin{aligned}
\overline{\left(z_{1} z_{2}\right)} & =\overline{(4+3 i)(2+5 i)}=\overline{(-7+26 i)}=-7-26 i \\
\bar{z}_{1} \bar{z}_{2} & =(4-3 i)(2-5 i)=-7-26 i
\end{aligned}
$$

Exercise

Verify the other identities for $z_{1}=4+3 i$ and $z_{2}=2+5 i$

Examples

Example

Let $z_{1}=4+3 i$ and $z_{2}=2+5 i$. Verify that $\overline{\left(z_{1} z_{2}\right)}=\bar{z}_{1} \bar{z}_{2}$.
Solution

$$
\begin{aligned}
\overline{\left(z_{1} z_{2}\right)} & =\overline{(4+3 i)(2+5 i)}=\overline{(-7+26 i)}=-7-26 i \\
\bar{z}_{1} \bar{z}_{2} & =(4-3 i)(2-5 i)=-7-26 i
\end{aligned}
$$

Exercise

Verify the other identities for $z_{1}=4+3 i$ and $z_{2}=2+5 i$.

Examples

Example

Let $z_{1}=4+3 i$ and $z_{2}=2+5 i$. Verify that $\overline{\left(z_{1} z_{2}\right)}=\bar{z}_{1} \bar{z}_{2}$.
Solution

$$
\begin{aligned}
\overline{\left(z_{1} z_{2}\right)} & =\overline{(4+3 i)(2+5 i)}=\overline{(-7+26 i)}=-7-26 i \\
\bar{z}_{1} \bar{z}_{2} & =(4-3 i)(2-5 i)=-7-26 i
\end{aligned}
$$

Exercise

Verify the other identities for $z_{1}=4+3 i$ and $z_{2}=2+5 i$.

Outline

(1) Complex Numbers

- Division
- Complex Conjugate Numbers
- Polar Form of Complex Numbers
(2) Derivative
- Monotonicity and the Sign of the Derivative

Definitions

- Polar coordinates r, θ defined by $x=r \cos \theta, y=r \sin \theta$.
- $z=x+i y$ takes the so-called polar form $z=r(\cos \theta+i \sin \theta)$
- The absolute value or modulus of z, r, is denoted by $|z|$.

$$
|z|=r=\sqrt{x^{2}+y^{2}}=\sqrt{z \bar{z}} .
$$

- The argument of z, θ, is denoted by $\arg z$.

$$
\theta=\arg z=\arctan \frac{y}{x} .
$$

Examples

Example

Let $z=1+i$, find the polar form of z.

Exercise

Let $z=3+3 \sqrt{3} i$, find the polar form of z.

Examples

Example

Let $z=1+i$, find the polar form of z.
Solution $z=\sqrt{2}\left(\cos \frac{1}{4} \pi+\sin \frac{1}{4} \pi\right)$. Hence, $r=|z|=\sqrt{2}$ and $\arg z=\frac{1}{4} \pi \pm 2 n \pi(n=0,1, \ldots)$.

Exercise

Let $z=3+3 \sqrt{3} i$, find the polar form of z.

Examples

Example

Let $z=1+i$, find the polar form of z.

$$
\begin{gathered}
\text { Solution } z=\sqrt{2}\left(\cos \frac{1}{4} \pi+\sin \frac{1}{4} \pi\right) . \text { Hence, } r=|z|=\sqrt{2} \text { and } \\
\\
\arg z=\frac{1}{4} \pi \pm 2 n \pi(n=0,1, \ldots) .
\end{gathered}
$$

Exercise

Let $z=3+3 \sqrt{3} i$, find the polar form of z.

The Geometrical Meaning of Multiplication and Division

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$.

Multiplication

$$
z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right](\text { Why ?? })
$$

Division

$z_{1} / z_{2}=r_{1} / r_{2}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]($ Why ?? $)$

The Geometrical Meaning of Multiplication and Division

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$.

Multiplication

$z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$ (Why??)

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$

Division
$z_{1} / z_{2}=r_{1} / r_{2}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]($ Why ?? $)$

The Geometrical Meaning of Multiplication and Division

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$.

Multiplication

$z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$ (Why??)

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$

Division

$z_{1} / z_{2}=r_{1} / r_{2}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]($ Why ?? $)$

The Geometrical Meaning of Multiplication and Division

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$.

Multiplication

$z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$ (Why??)

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$

Division

$z_{1} / z_{2}=r_{1} / r_{2}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]($ Why??)

The Geometrical Meaning of Multiplication and Division

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$.

Multiplication

$z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]($ Why??)

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$

Division

$z_{1} / z_{2}=r_{1} / r_{2}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]($ Why??)

- $\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right|$
- $\arg \left(z_{1} / z_{2}\right)=\arg z_{1}-\arg z_{2}$

The Geometrical Meaning of Multiplication and Division

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$.

Multiplication

$z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]($ Why??)

- $\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2}$

Division

$z_{1} / z_{2}=r_{1} / r_{2}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]($ Why??)

- $\left|z_{1} / z_{2}\right|=\left|z_{1}\right| /\left|z_{2}\right|$
- $\arg \left(z_{1} / z_{2}\right)=\arg z_{1}-\arg z_{2}$

Powers and Roots

Integer powers of z

$z^{n}=r^{n}(\cos n \theta+i \sin n \theta)($ why??)
*De Moivre's formula: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
nth root of z
$\sqrt[n]{z}=\sqrt[n]{r}\left(\cos \frac{\theta+2 k \pi}{n}+i \sin \frac{\theta+2 k \pi}{n}\right)$, where $k=0,1, \ldots, n-1$.
(Why??)
*nth roots of unity: $\sqrt[n]{1}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$)

Powers and Roots

Integer powers of z

$z^{n}=r^{n}(\cos n \theta+i \sin n \theta)$ (why??)
*De Moivre's formula: $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$
nth root of z
$\sqrt[n]{z}=\sqrt[n]{r}\left(\cos \frac{\theta+2 k \pi}{n}+i \sin \frac{\theta+2 k \pi}{n}\right)$, where $k=0,1, \ldots, n-1$.
(Why??)
*nth roots of unity: $\sqrt[n]{1}=\cos \frac{2 k \pi}{n}+i \sin \frac{2 k \pi}{n}$)

Complex Numbers Derivative

Puzzle

What is i^{i} ?

Hint: What is $e^{i \frac{\pi}{2}}$?

Answer

Puzzle

What is i^{i} ?

Hint: What is $e^{i \frac{\pi}{2}}$?

Answer

Puzzle

What is i^{i} ?
Hint: What is $e^{i \frac{\pi}{2}}$?
Answer
$e^{i \frac{\pi}{2}}=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}=i$
$\Longrightarrow \ln i=i \frac{\pi}{2} \Longrightarrow i \ln i=-\frac{\pi}{2}$
Since $i^{i}=e^{i \ln i}$, therefore $i^{i}=e^{-\frac{\pi}{2}}$.

Outline

(1) Complex Numbers

- Division
- Complex Conjugate Numbers
- Polar Form of Complex Numbers
(2) Derivative
- Monotonicity and the Sign of the Derivative

Definitions and Rules

- Definition
- A function $f(x)$ is increasing on an interval I iff for any $x_{1}, x_{2} \in I \quad x_{1} \leq x_{2}$ implies $f\left(x_{1}\right) \leq f\left(x_{2}\right)$.
- A function $f(x)$ is decreasing on an interval $/$ iff for any $x_{1}, x_{2} \in I x_{1} \leq x_{2}$ implies $f\left(x_{1}\right) \geq f\left(x_{2}\right)$.
- Rules (Why?? Hint: definition of derivative)
- $f^{\prime}(x) \geq 0$ for all x in the interior of I exactly if $f(x)$ is increasing on all of I;
- $f^{\prime}(x) \leq 0$ for all x in the interior of I exactly if $f(x)$ is decreasing on all of I;
- $f^{\prime}(x)=0$ for all x in the interior of I exactly if $f(x)$ is constant on all of I.

Example

Example

Sketch the function $f(x)=2 x^{3}-3 x^{2}-12 x+1$

$$
\begin{aligned}
& \text { Solution } f^{\prime}(x)=6 x^{2}-6 x-12=6(x-2)(x-1) . \\
& \qquad \text { So we have, } \begin{cases}f^{\prime}(x)>0 & \text { if } x<-1 \\
f^{\prime}(x)<0 & \text { if }-1<x<2 \\
f^{\prime}(x)>0 & \text { if } x>2 \\
f^{\prime}(x)=0 & \text { iff } x=-1 \text { or } x=2\end{cases} \\
& \text { So } f(x) \text { is increasing on the intervals }(-\infty,-1] \text { and } \\
& {[2, \infty) \text {, and } f(x) \text { is decreasing on the interval }[-1,2] \text {. }} \\
& \text { Verify your sketch by the maxima code: } \\
& \text { wxplot2d }\left(\left[2^{*} x^{\wedge} 3-3^{*} x^{\wedge} 2-12^{*} x+1\right],[x,-5,5],[y,-20,10]\right) \$ \$
\end{aligned}
$$

Example

Example

Sketch the function $f(x)=2 x^{3}-3 x^{2}-12 x+1$
Solution $f^{\prime}(x)=6 x^{2}-6 x-12=6(x-2)(x-1)$.
So we have , $\begin{cases}f^{\prime}(x)>0 & \text { if } x<-1 \\ f^{\prime}(x)<0 & \text { if }-1<x<2 \\ f^{\prime}(x)>0 & \text { if } x>2 \\ f^{\prime}(x)=0 & \text { iff } x=-1 \text { or } x=2\end{cases}$
So $f(x)$ is increasing on the intervals $(-\infty,-1]$ and $[2, \infty)$, and $f(x)$ is decreasing on the interval $[-1,2]$.
Verify your sketch by the maxima code: wxplot2d([2* $\left.\left.x^{\wedge} 3-3^{*} x^{\wedge} 2-12^{*} x+1\right],[x,-5,5],[y,-20,10]\right) \$$

Exercises

Exercise1

Find the intervals on which $f(x)=x+\sin x$ is increasing or decreasing.

Exercise2

Without calculating the numerical results, can you tell me which number is larger, e^{π} or π^{e} ? (Hint: 1 . Monotonicity of a function or 2. Taylor's series of e^{x})

