| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

6 Indefinite Integrals

Page history last edited by CAI, Sheng 12 years, 1 month ago

Indefinite Integrals
Bridge Course, August 2012

Definition

Let f(x) be a function. If F(x) is another function such that its derivative is equal to f(x), that is,

                                                                        Formula

then F(x) is called the primitive function. Note that primitive function is not unique. For example,

                                                  Formula

All Formula are primitive function of 2x.

In general, if F(x) is a primitive function of f(x) and C is a constant, then

                                                            Formula

If F(x) is one of the primitive function of f(x), then we have

                              Formula

This process of solving for F(x) from a giving f(x) is called indefinite integration and its opposite function is called differentiation, which is the process of finding a derivative.

 

Properties

Formula

Examples                                                                                                           MAXIMA code

1. Evaluate Formula                                                                                                       integrate(2/x, x)

   Formula

2. Evaluate Formula                                                                             integrate((x + 1) ^ 2/x, x)

   Formula

 

Method of Substitution

Let u = (x) be a differentiable function and Formula. Then, 

                                                    Formula

Note that we can simply write as: Formula

 

Examples

1. Evaluate Formula                                                                                 integrate(cos(3 ∗ x), x)

Let u = 3x and du = 3dx

Hence, 

                                        Formula

2. Evaluate Formula                                                             integrate(x ^ 2 ∗ (2 ∗ x ^ 3 + 5) ^ 5, x)

Let u = 2 − x and du = −dx

Hence,

                                             Formula

3. Evaluate Formula                                           integrate(x ^ 2 ∗ (2 ∗ x ^ 3 + 5) ^ 5, x)

Let u = 2Formula + 3 and du = 6Formuladx

Hence, 

Formula

 

Exercises

Evaluate the following integrals by method of substitution

1. Formula                                                                            integrate(x ^ 2 ∗ sqrt(x − 3), x)

2. Formula                                     integrate((x + 1) ∗ sin(x ^ 2 + 2 ∗ x + 1), x)

3. Formula                                                              integrate(%e ^ x ∗ (1 − %e ^ x) ^ (−1/4), x)

4. Formula                                                                integrate(2/sqrt(x) ∗ %e ^ (−sqrt(x)), x)

5. Formula                                                                            integrate(1/sqrt(a ^ 2 − x ^ 2), x)

6. Formula                                                                                     integrate(1/(a ^ 2 + x ^ 2), x)

 

Integration of Rational Functions

A rational function Formula is a quotient of two polynomials P(x) and Q(x).When integrating the rational function, the usual technique we use is to decompose the rational function into partial fractions.

Note that: We have to ensure f(x) is a proper fraction(that is degree of P(x) must be less that Q(x)) before we decompose f(x) into partial fractions.

 

Some transformation of partial fractions

                    Formula

 

Examples

1. Evaluate Formula                                                                        integrate(1/(x ^ 2 − a ^ 2), x)

     First, we have to decompose it into partial fractions, Formula

     and we let Formula

     By solving, we get Formula.                                       partfrac(1/(x ^ 2 − a ^ 2), x)

     Then, 

     Formula

 

2. Evaluate Formula                            integrate((4 ∗ x ^ 2 + x + 12)/(x ∗ (x ^ 2 + 4)), x)

     First, decompose into partial fractions, we let Formula

     By solving, we get Formula     partfrac((4 ∗ x ^ 2+x+12)/(x ∗ (x ^ 2+4)), x)

     Then,

     Formula

 

3. Evaluate Formula                                              integrate((x ^ 2)/(x ^ 2 − 2 ∗ x + 1), x)

     Since Formula, we let Formula

     By solving, we get Formulapartfrac((x ^ 2)/(x ^ 2−2 ∗ x+1), x)

     Then,

     Formula

 

Exercises

Evaluate the following integrals

1. Formula                                                                 integrate(x/(2 ∗ x ^ 2 + x − 3), x)

2. Formula                                                                                               find it yourself

3. Formula                                                                                            find it yourself

4. Formula                                                                                     find it yourself

5. Formula                                                                                         find it yourself

 

Integration by parts

Let u(x) and v(x) be two real-valued functions with continuous first derivatives. Then

                                                                 Formula

The formula is simple so let’s get some illustration.

 

Examples

1. Evaluate Formula                                                                           integrate(x ^ 2 ∗ %e ^ x, x)

     Formula

2. Evaluate Formula                                                                      integrate(x ∗ sin(2 ∗ x), x)

     Formula

3. Evaluate Formula                                                 integrate(x ^ n ∗ log(x), x)

     Formula

4. Evaluate Formula                                                                  integrate(cos(x) ∗ %e ^ x, x)

     Formula

     Hence, we have

     Formula

     where C and C' are constants.

 

Exercises

Evaluate the following integrals

1. Formula                                                                                integrate(x ∗ %e ^ (2 ∗ x), x)

2. Formula                                                                                             find it yourself

3. Formula                                                                                               find it yourself

4. Formula                                                                                                      find it yourself

5. Formula                                                                                               find it yourself

Comments (0)

You don't have permission to comment on this page.