| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • You already know Dokkio is an AI-powered assistant to organize & manage your digital files & messages. Very soon, Dokkio will support Outlook as well as One Drive. Check it out today!

View
 

Complex Numbers (redirected from Complex Number and Maclaurin Series)

Page history last edited by CAI, Sheng 11 years, 10 months ago

Complex Numbers

A complex number is a number, z, which can be put in the form a + bi, where a and b are real numbers and i is called the imaginary unit, where i2 = −1. In this expression, a is called the real part, Re(z), and b the imaginary part, Im(z), of the complex number. Complex numbers extend the idea of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a + bi can be identified with the point (ab) 

Fig.1 An illustration of the complex plane

 

Basic Calculus:

1. About i

FormulaFormulaFormulaFormula.

Formula

 

2. Addition and Subtraction

Formula

Formula

 

3. Multiplication and Division

Formula

Formula

 

 

Euler's formula

Formula

 

Fig.2 Euler's formula for a general angle

 

Example 1:

Prove Formula

 

Proof:

Formula

Formula

Formula

Formula

Formula

 

Meanwhile, we know that 

Formula

Formula

 

Example 2:

Prove Formula and Formula

 

Proof:

Formula

Formula

Formula

Formula

Therefore, Formula and Formula.

 

Exercise:

Formula and Formula

 

Maclaurin series

Formula                                                                        maxima code: taylor(1/(1-x),x,0,5);

 

Formula                                 maxima code: taylor(log(1+x),x,0,5);

 

Formula

 

Formula

Hint: Formula or Formula

 

Formula

Hint: Formula or Formula

 

 

 

 

 

 

Comments (0)

You don't have permission to comment on this page.